What does

Spring Boot 3.2 + Java 21

offer compared to the previous versions and golang/echo?

Ufuk Uzun

Trendyol Tech
2023 December

Agenda

Java 21

Spring Boot 3.x

Migration Guide

Demo & Load Test Results

What's new in Java 21?

e Released features:

o Virtual Threads (Project Loom)

o The Record Patterns (Project Amber)

@ Pattern Matching for switch Statements (Project Amber)

o SequencedCollection (direct access to an ordered collection’s first and last elements)
e New preview features:

o String Templates

o Structured Concurrency (Project Loom)

o Scoped Values

o Unnamed Patterns and Variables

o Unnamed Classes and Instance Main Methods

e Demo: https://github.com/ufuk/java-new-features-demos

https://github.com/ufuk/java-new-features-demos

Java 21 - Virtual Threads

° Previously known as 'fibers'

° Part of Project Loom: High-throughput, lightweight concurrency model in Java

° “Non-blocking 10, but looks and feels like blocking |O” ~Josh Long

° Platform Threads vs. Virtual Threads vs:
Implementation OS-managed JVM-managed
Weight Heavyweight Lightweight
Scalability Limited High
Blocking impact Blocks entire OS thread Non-blocking
Maturity Traditional approach Emerging technology

° Demo: https://github.com/ufuk/java-new-features-demos/blob/main/src/test/java/io/github/ufuk/javal9/Javal9Tests.java

https://www.baeldung.com/openjdk-project-loom
https://github.com/ufuk/java-new-features-demos/blob/main/src/test/java/io/github/ufuk/java19/Java19Tests.java

What's so special about Spring Boot 3.x?

GraalVM Native Support (3.0)

Min. Java 17 (3.0)

Min. Jakarta EE 9 (3.0) (A goodbye to “tawvax”, god bless “jakarta”)
Docker Compose support (3.1)

Simplified configuration of Testcontainers in integration tests (3.1)
Virtual Threads (3.2)

https://www.graalvm.org/
https://www.youtube.com/watch?v=TOfYlLjXufw
https://www.youtube.com/watch?v=H6HwoWZtngs
https://jakarta.ee/about/faq/
https://www.youtube.com/watch?v=H6HwoWZtngs
https://www.youtube.com/watch?v=ykEK2xuJrN8
https://www.youtube.com/watch?v=ykEK2xuJrN8
https://www.youtube.com/watch?v=dMhpDdR6nHw

Spring Boot 3.0 - GraalVM Native Support

e Support for compiling Spring applications to native executables using the GraalVM native-image
compiler
e Ahead-of-Time (AOT) vs. Just-in-Time (JIT) Compilation

o Native executable vs. Bytecode

GraalVM Native Support

Support for compiling Spring applications to native executables using the GraalVM native-image
compiler.

Spring Boot 3.2 - Virtual Threads

e Still Thread (Virtual one) per request model, but without blocking the underlying Platform Thread
o More: Significant Scalability Benefits in Spring Boot 3.2 using Virtual Threads

e Tomcat has already started supporting: StandardVirtualThreadExecutor

® spring.threads.virtual.enabled=true

tform Platform

Platforn | [Platform | | Platform
aaaaaaaaaaaa thread

https://www.youtube.com/watch?v=THavIYnlwck
https://tomcat.apache.org/tomcat-10.1-doc/config/executor.html

Migration Guide

1. First, migrate to Spring Boot 2.7 + Java 17 (from <2.7 & <17)
Then, migrate to Spring Boot 3.0 + Java 17
3. Finally, migrate to Spring Boot 3.2 + Java 21

N

More: https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-3.0-Migration-Guide

https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-3.0-Migration-Guide

It's Demo Time

https://github.com/ufuk/load-test-demos

DEMOTIME

https://github.com/ufuk/load-test-demos

Spring Boot 3.2 Demo

https://start.spring.io/

C spring initializr

Project Language Dependencies ADD DEPENDENCIE:
O Gradle-Groovy O Gradle - Kotlin [] O Kotlin -~ O Groovy
@ Waven GraalVM Native Support
Support for compiling Spring applications to native executables using the GraalVM native-image
Spring Boot compiler.
O 321 (SNAPSHOT) @ 320 QO 3.1.7(SNAPSHOT) O 3.1.6

(K11 G DEVELOPER TOOLS

Project Metadata Java annotation library which helps to reduce boilerplate code.

Group io.github.ufuk.springboot3

Spring Boot Actuator [
Artifact spring-boot-3-demo Supports built in (or custom) endpoints that let you monitor and manage your application - such
as application health, metrics, sessions, etc.

spring Web [[TE0
Description Demo project for Spring Boot Build web, including RESTful, applications using Spring MVC. Uses Apache Tomcat as the
default embedded container.

Name spring-boot-3-demo

Package name io.github.ufuk.springboot3.demo

Packaging @ . O War

Java @ 2 O 17

https://start.spring.io/

Spring Boot Demo: A Simple Blocking Operation

) @
@RestController
@RequestMapping("demo")

public class DemoController {

@GetMapping("sum")

public DemoSumResponse sum(@RequestParam Long valuel, @RequestParam Long value2) throws Exception {
Thread.sleep(100);
return new DemoSumResponse(valuel + value2);

golang/echo Demo: A Simple Blocking Operation

@
e.GET("/demo/sum", func(c echo.Context) (err error) {

req := (SumRequest)
if err = c.Bind(req); err != {

return echo.NewHTTPError(http.StatusBadRequest, err.Error())
}

time.Sleep(100 * time.Millisecond)
sum := req.Valuel + req.Value2

return c.JSON(http.StatusOK, SumResponse{Result: sum})

Load Test Results #1

Run test with 100 Spring Boot 2.6 + Spring Boot 3.2 + Spring Boot 3.2 + Spring Boot 3.2 + Spring Boot 3.2 + Echov4 + Go 1.21
concurrent user Java 11 (jvm) Java 21 (jvm) (no Java 21 (jvm) Java 21 (native) Java 21 (native)
for 30 seconds virtual threads) (virtual threads (no virtual (virtual threads
enabled) threads) enabled)

Startup time 2269ms 2269ms 1874ms 119ms 112ms afewms
Memory min=206MB, min=159MB, min=159MB, min=67MB, min=67MB, min=3MB,
(min, avg, max) avg=352MB, avg=310MB, avg=243MB, avg=135MB, avg=100MB, avg=13MB,

max=416MB max=354MB max=251MB max=149MB max=112MB max=15MB
Total request 28722 28537 28300 29024 28614 29600
RPS 954/s 949/s 941/s 965/s 950/s 985/s

Load Test Results #2

Run test with 1000 | Spring Boot 2.6 + Spring Boot 3.2 + Spring Boot 3.2 + Spring Boot 3.2 + Spring Boot 3.2 + Echov4 + Go 1.21
concurrent user Java 11 (jvm) Java 21 (jvm) (no Java 21 (jvm) Java 21 (native) Java 21 (native)
for 30 seconds virtual threads) (virtual threads (no virtual (virtual threads
enabled) threads) enabled)

Memory min=210MB, min=159MB, min=159MB, min=67MB, min=67MB, min=3MB,

(min, avg, max) avg=541MB, avg=314MB, avg=1175MB, avg=217MB, avg=484MB, avg=53MB,

max=626MB max=325MB max=1420MB max=248MB max=929MB max=60MB

Total request 64974 63443 281236 64879 204408 297547

Failed request 6520 4901 1983 6324 6784 3440

(10.0%) (7.7%) (0.7%) (9.7%) (3.3%) (1.1%)

RPS 2129/s 2081/s 9344/s 2125/s 6768/s 9885/s

Load Test Results #3

Run test with 1000
concurrent user for 30
seconds.
server.tomcat.threads:
min=200, max=1000

Spring Boot 3.2 + Java
21 (jvm) (no virtual
threads)

Spring Boot 3.2 + Java
21 (jvm) (virtual threads
enabled)

Spring Boot 3.2 + Java
21 (native) (no virtual
threads)

Spring Boot 3.2 + Java
21 (native) (virtual
threads enabled)

Memory

min=178MB,

min=159MB, min=78MB, min=68MB,

(min, avg, max) avg=820MB, avg=923MB, avg=432MB, avg=467MB,
max=883MB max=1083MB max=501MB max=859MB

Total request 285328 286986 202284 206118
Failed request 6223 4195 8629 7690
(2.2%) (1.4%) (4.2%) (3.7%)

RPS 9479/s 9538/s 6716/s 6847/s

Load Test Results #4

Run test with 1000
concurrent user for 30
seconds.

Spring Boot 2.6 + Java
11 (jvm) (no virtual
threads)
server.tomcat.threads:

min=100, max=500

Spring Boot 3.2 + Java
21 (jvm) (no virtual
threads)
server.tomcat.threads:
min=100, max=500

Spring Boot 3.2 + Java
21 (jvm) (virtual
threads enabled)
server.tomcat.threads:
min=10, max=200

(default values)

Memory

min=196MB,

min=168MB, min=159MB,

(min, avg, max) avg=643MB, avg=368MB, avg=1211MB,
max=702MB max=379MB max=1428MB

Total request 148576 148956 286168
Failed request 4801 5562 2426
(3.2%) (3.7%) (0.8%)

RPS 4919/s 4936/s 9508/s

Conclusions

e Native compilation support is preferable for:
o Faster startup time
@) Low resource usage
e Virtual Thread support is preferable for:
o Scalability
@ Resource utilization

Q&A

Any question?

