
What does

Spring Boot 3.2 + Java 21
offer compared to the previous versions and golang/echo?

Ufuk Uzun
Trendyol Tech

2023 December



Agenda

● Java 21

● Spring Boot 3.x

● Migration Guide

● Demo & Load Test Results



What’s new in Java 21?

● Released features:
○ Virtual Threads (Project Loom)
○ The Record Patterns (Project Amber)
○ Pattern Matching for switch Statements (Project Amber)
○ SequencedCollection (direct access to an ordered collection’s first and last elements)

● New preview features:
○ String Templates
○ Structured Concurrency (Project Loom)
○ Scoped Values
○ Unnamed Patterns and Variables
○ Unnamed Classes and Instance Main Methods

● Demo: https://github.com/ufuk/java-new-features-demos 

https://github.com/ufuk/java-new-features-demos


Java 21 - Virtual Threads

● Previously known as 'fibers'
● Part of Project Loom: High-throughput, lightweight concurrency model in Java
● “Non-blocking IO, but looks and feels like blocking IO” ~Josh Long
● Platform Threads vs. Virtual Threads vs:

● Demo: https://github.com/ufuk/java-new-features-demos/blob/main/src/test/java/io/github/ufuk/java19/Java19Tests.java

Implementation OS-managed JVM-managed

Weight Heavyweight Lightweight

Scalability Limited High

Blocking impact Blocks entire OS thread Non-blocking

Maturity Traditional approach Emerging technology

https://www.baeldung.com/openjdk-project-loom
https://github.com/ufuk/java-new-features-demos/blob/main/src/test/java/io/github/ufuk/java19/Java19Tests.java


What’s so special about Spring Boot 3.x?

● GraalVM Native Support (3.0)

● Min. Java 17 (3.0)

● Min. Jakarta EE 9 (3.0) (A goodbye to “javax”, god bless “jakarta”)

● Docker Compose support (3.1)

● Simplified configuration of Testcontainers in integration tests (3.1)

● Virtual Threads (3.2)

● …

https://www.graalvm.org/
https://www.youtube.com/watch?v=TOfYlLjXufw
https://www.youtube.com/watch?v=H6HwoWZtngs
https://jakarta.ee/about/faq/
https://www.youtube.com/watch?v=H6HwoWZtngs
https://www.youtube.com/watch?v=ykEK2xuJrN8
https://www.youtube.com/watch?v=ykEK2xuJrN8
https://www.youtube.com/watch?v=dMhpDdR6nHw


Spring Boot 3.0 - GraalVM Native Support

● Support for compiling Spring applications to native executables using the GraalVM native-image 

compiler

● Ahead-of-Time (AOT) vs. Just-in-Time (JIT) Compilation
○ Native executable vs. Bytecode



Spring Boot 3.2 - Virtual Threads

● Still Thread (Virtual one) per request model, but without blocking the underlying Platform Thread

○ More: Significant Scalability Benefits in Spring Boot 3.2 using Virtual Threads

● Tomcat has already started supporting: StandardVirtualThreadExecutor

● spring.threads.virtual.enabled=true

https://www.youtube.com/watch?v=THavIYnlwck
https://tomcat.apache.org/tomcat-10.1-doc/config/executor.html


Migration Guide

1. First, migrate to Spring Boot 2.7 + Java 17 (from <2.7 & <17)

2. Then, migrate to Spring Boot 3.0 + Java 17

3. Finally, migrate to Spring Boot 3.2 + Java 21

More: https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-3.0-Migration-Guide 

https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-3.0-Migration-Guide


It’s Demo Time

https://github.com/ufuk/load-test-demos

https://github.com/ufuk/load-test-demos


Spring Boot 3.2 Demo

https://start.spring.io/ 

https://start.spring.io/


Spring Boot Demo: A Simple Blocking Operation



golang/echo Demo: A Simple Blocking Operation



Load Test Results #1
Run test with 100 
concurrent user 
for 30 seconds

Spring Boot 2.6 + 
Java 11 (jvm)

Spring Boot 3.2 + 
Java 21 (jvm) (no 
virtual threads)

Spring Boot 3.2 + 
Java 21 (jvm) 
(virtual threads 
enabled)

Spring Boot 3.2 + 
Java 21 (native) 
(no virtual 
threads)

Spring Boot 3.2 + 
Java 21 (native) 
(virtual threads 
enabled)

Echo v4 + Go 1.21

Startup time 2269ms 2269ms 1874ms 119ms 112ms a few ms

Memory
(min, avg, max)

min=206MB, 
avg=352MB, 
max=416MB

min=159MB, 
avg=310MB, 
max=354MB

min=159MB, 
avg=243MB, 
max=251MB

min=67MB, 
avg=135MB, 
max=149MB

min=67MB, 
avg=100MB, 
max=112MB

min=3MB, 
avg=13MB, 
max=15MB

Total request 28722 28537 28300 29024 28614 29600

RPS 954/s 949/s 941/s 965/s 950/s 985/s



Load Test Results #2
Run test with 1000 
concurrent user 
for 30 seconds

Spring Boot 2.6 + 
Java 11 (jvm)

Spring Boot 3.2 + 
Java 21 (jvm) (no 
virtual threads)

Spring Boot 3.2 + 
Java 21 (jvm) 
(virtual threads 
enabled)

Spring Boot 3.2 + 
Java 21 (native) 
(no virtual 
threads)

Spring Boot 3.2 + 
Java 21 (native) 
(virtual threads 
enabled)

Echo v4 + Go 1.21

Memory
(min, avg, max)

min=210MB, 
avg=541MB, 
max=626MB

min=159MB, 
avg=314MB, 
max=325MB

min=159MB, 
avg=1175MB, 
max=1420MB

min=67MB, 
avg=217MB, 
max=248MB

min=67MB, 
avg=484MB, 
max=929MB

min=3MB, 
avg=53MB, 
max=60MB

Total request 64974 63443 281236 64879 204408 297547

Failed request 6520
(10.0%)

4901
(7.7%)

1983
(0.7%)

6324
(9.7%)

6784
(3.3%)

3440
(1.1%)

RPS 2129/s 2081/s 9344/s 2125/s 6768/s 9885/s



Load Test Results #3
Run test with 1000 
concurrent user for 30 
seconds.
server.tomcat.threads:
min=200, max=1000

Spring Boot 3.2 + Java 
21 (jvm) (no virtual 
threads)

Spring Boot 3.2 + Java 
21 (jvm) (virtual threads 
enabled)

Spring Boot 3.2 + Java 
21 (native) (no virtual 
threads)

Spring Boot 3.2 + Java 
21 (native) (virtual 
threads enabled)

Memory
(min, avg, max)

min=178MB, 
avg=820MB, 
max=883MB

min=159MB, 
avg=923MB, 

max=1083MB

min=78MB, 
avg=432MB, 
max=501MB

min=68MB, 
avg=467MB, 
max=859MB

Total request 285328 286986 202284 206118

Failed request 6223
(2.2%)

4195
(1.4%)

8629
(4.2%)

7690
(3.7%)

RPS 9479/s 9538/s 6716/s 6847/s



Load Test Results #4
Run test with 1000 
concurrent user for 30 
seconds.

Spring Boot 2.6 + Java 
11 (jvm) (no virtual 
threads)
server.tomcat.threads:
min=100, max=500

Spring Boot 3.2 + Java 
21 (jvm) (no virtual 
threads)
server.tomcat.threads:
min=100, max=500

Spring Boot 3.2 + Java 
21 (jvm) (virtual 
threads enabled)
server.tomcat.threads:
min=10, max=200
(default values)

Memory
(min, avg, max)

min=196MB, 
avg=643MB, 
max=702MB

min=168MB, 
avg=368MB, 
max=379MB

min=159MB, 
avg=1211MB, 
max=1428MB

Total request 148576 148956 286168

Failed request 4801
(3.2%)

5562
(3.7%)

2426
(0.8%)

RPS 4919/s 4936/s 9508/s



Conclusions

● Native compilation support is preferable for:
○ Faster startup time

○ Low resource usage

● Virtual Thread support is preferable for:
○ Scalability

○ Resource utilization



Q&A

Any question?


